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Abstract: 14 

Previous studies investigating the performance of transmission and reflection datasets for 15 

disease detection showed inconsistent results. Within the studies the performance of 16 

transmission imaging varied significantly for the detection of biotroph and necrotrophy plant 17 

pathogens, while reflection imaging showed excellent results in both studies. The current study 18 

explores the hypothesis that the disparity between these results might be correlated with the 19 

different interactions of the respective pathogens with the host plants and the way light interacts 20 

with the plant tissue. Pyrenophora teres f. teres and Puccinia hordei – the causative agents of 21 

net blotch and brown rust in barley – have been investigated with focus on early-stage detection 22 
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and quantification (disease severity) of symptoms.  Datasets of hyperspectral imaging time-23 

series measurements were analysed through application of multiple data analysis methods 24 

(support vector machines; principal component analysis with following distance classifier; 25 

spectral decomposition) in order to compare the performance of both datasets for the detection 26 

of disease symptoms.  27 

It could be shown that transmittance-based brown rust detection (e.g., 12% disease severity) is 28 

outperformed by reflectance-based detection (e.g., 36% disease severity) regardless of the 29 

algorithm. However, both the detection and quantification of brown rust through transmittance 30 

was more accurate than those of powdery mildew in earlier studies. Transmittance and 31 

reflectance performed similar for the detection of net blotch disease during the experiments 32 

(~1% disease severity for reflection and transmission). Each data analysis method outperformed 33 

manual rating in terms of disease detection (e.g., 15% disease severity according to manual 34 

rating and 36% through support vector machines for rust reflection data). Except for the 35 

application of a distance classifier on net blotch transmittance data it could be shown, that 36 

pixels, which were classified as symptomatic through the data analysis methods while estimated 37 

to represent healthy tissue during manual rating, correlate with areas at the edges of manually 38 

detected symptoms. The results of this study support the hypothesis that transmission imaging 39 

results are highly correlated to the type of plant-pathogen interaction of the respective 40 

pathogens, offering new insights into the nature of transmission-based hyperspectral imaging 41 

and its application range.  42 

 43 
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Introduction: 47 

The use of optical sensors for plant phenotyping and detection of both abiotic and biotic stresses 48 

has become increasingly common as a research focus (Roitsch et al. 2019; Mahlein et al. 2019; 49 

Oerke 2020). However, the overwhelming majority of current studies are focussed on 50 

measuring the properties of light which is reflected from the plant tissue in order to correlate 51 

changes with plant stress reactions (Kuska et al. 2015; Alisaac et al. 2018; AlSuwaidi et al. 52 

2018). Meanwhile research into the possibilities of the spectral properties of light which has 53 

been transmitted through the plant tissue is rarely conducted (Zhang et al. 2016; Hovi et al. 54 

2018; Sun et al. 2018). Recent studies about the possibilities of transmitted light for plant 55 

pathogen detection with hyperspectral imaging sensors showed inconsistent results. 56 

Thomas et al. (2017) performed a measurement of combined reflection and transmission with 57 

focus on plant-pathogen interaction with hyperspectral imaging sensors. The authors 58 

investigated barley leaves, which were inoculated with conidia of Blumeria graminis f. sp. 59 

hordei – the causative agent of powdery mildew – with the HyperArt measurement setup 60 

(Bergsträsser et al. 2015) for simultaneous measurement of reflection and transmission. The 61 

results of the study showed that it is possible to detect powdery mildew infection of barley 62 

leaves at leaf level two days before symptoms are visible on RGB images through automatically 63 

analysed reflection based hyperspectral data. Furthermore, it could be shown, that the 64 

combination of reflection and transmission data was advantageous to distinguish late powdery 65 

mildew symptom and spontaneous necrosis of resistant barley leaves. However, the results of 66 

the study did show that transmission-based detection of powdery mildew symptoms was not 67 

possible before symptoms on the leaves were already visible for two days with reflection based 68 

RGB imagery. These results stood in contrast to the study of Bergsträsser et al. (2015), which 69 

performed single measurements of visible symptoms of Cercospora beticola infection on sugar 70 

beet leaves. It was shown, that reflection and transmission-based data performed equally for the 71 
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detection of disease symptoms. Thomas et al. (2017) theorised, that this could be explained 72 

based on the different interaction of the two pathogens with the plant tissue. While powdery 73 

mildew symptoms, caused by the biotroph pathogen Blumeria graminis f. sp. hordei, develop 74 

as small pustules on the leaf surface with the fungi only penetrating the epidermis cells of the 75 

plant (Bhat et al. 2005; Dean et al. 2012), Cercospora leaf spot symptoms, caused by the 76 

necrotroph pathogen Cercospora beticola,  appear as necrotic lesions on the leaves once the 77 

fungi switches to its necrotic phase after penetrating the leaf tissue through the stomata and 78 

spreading intercellularly (Steinkamp et al. 1979; Rangel et al. 2020). In this article further 79 

studies into the matter and principle of transmission measurement via optical sensors are 80 

presented in an attempt to confirm the hypothesis of Thomas et al. (2017).  81 

Light interacts with plant leaves in a complex matter. Upon reaching the plant surface (cuticle 82 

and epidermis) a significant portion of the light is directly reflected and can be measured, 83 

providing information about the plant surface it interacted with (Fig. 1). The portion of the light 84 

which is neither reflected nor absorbed by the plant’s surface enters the plant tissue, where it is 85 

scattered diffusely as it interacts with organelles and intercellular air spaces (Vogelmann et al. 86 

1989). During the passing of the plant tissue a small amount of light is reflected back to the 87 

upper surface, the majority of light travels through the plant’s mesophyll layer and the lower 88 

epidermis of the leaf. Upon reaching the surface-air border the majority of the diffusely 89 

scattered light is reflected back into the plant, with only a small portion is being transmitted 90 

through the leaf as it arrives at the surface-air border in the right angle (Fig. 1; Brakke 1994). 91 

The light, which was reflected is scattered diffusely once more as it travels back through the 92 

plant tissue layers up to the surface-air border of the upper epidermis, where a small portion is 93 

being transmitted and measured together with the surface reflection by reflection-based imaging 94 

methods, while the larger portion of the light is reflected back into the leaf tissue again (Fig. 1). 95 

This complex process allows the plant to maximize the usage of incoming light for 96 
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photosynthesis (Brakke 1994). These processes provide the reason why it is possible to detect 97 

metabolic changes in plants with reflection-based measurement. The study of Nansen (2018) 98 

did also show that hyperspectral measurements have a considerable penetration of measured 99 

objects. Their study showed that different backgrounds influence leaf measurements – 100 

especially with multiple layers of leaves being measured.  101 

This could explain why reflection measurement outperforms transmission measurement for 102 

biotroph pathogens like Blumeria graminis f. sp. hordei, which mostly interact with the plant 103 

at the epidermis layer, as direct reflection at the plant surface permits the detection of the fungal 104 

tissue. Meanwhile transmitted light would mix with light, which has not interacted with fungal 105 

tissue or affected epidermis cells, due to diffuse scattering while traversing the leaf tissue, 106 

reducing the detection efficiency. Necrotroph pathogens like Cercospora betilola tend to be 107 

more invasive in their interaction with the host plant, which would result in a similar detection 108 

accuracy to biotroph pathogens in reflectance measurement, but an increased performance in 109 

transmittance measurement, as the traversing light interacts with the pathogen and infected 110 

plant tissue in deeper layers of the leaf.  111 

This study aims to provide insights into the matter of transmittance measurements of plant-112 

pathogen interaction through practical experiments with a set of pathogens with diverse 113 

lifestyles. Measurements with the HyperArt setup were performed with barley leaves inoculated 114 

with pathogens, which interact with different layers of the plant tissue, as time-series 115 

measurements.  116 

Puccinia hordei, the causative agent of brown rust, is a biotrophic pathogen, which enters 117 

infected barley leaves through the stomata (Fig. 2b; Voegele 2006). Once inside the plant 118 

mesophyll the fungi grows, forming intercellular haustoria to feed upon the plant before finally 119 

forming colonies, which break through the epidermis to release new spores (Fig. 2b; Voegele 120 

2006).  121 
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Pyrenophora teres f. teres (anamorph: Drechslera teres), the causative agent of net blotch, is a 122 

necrotrophic pathogen. It penetrates directly through the cuticle, cell wall and cell membrane 123 

of the host plants epidermis cells, where it forms a primary and secondary intracellular vesicle 124 

(Fig. 2c; Liu et al. 2011). When the secondary vesicle is formed, the host epidermis cell – as 125 

well as nearby epidermis cells – are functionally disrupted. A hypha forms intracellular from 126 

the secondary vesicle and breaks into the intercellular space of the mesophyll, where it secretes 127 

toxins/effectors which lead to the disruption of nearby mesophyll cells to provide the 128 

necrotrophic fungi with nutrients (Fig. 2c; Liu et al. 2011). 129 

The two pathogens interact in a different way compared to B. graminis f. sp. hordei. The 130 

development of P. hordei is relatively subtle at first – before the plant tissue gets disrupted 131 

through the fungi breaking through the epidermis. Its growth within the mesophyll should allow 132 

for increased detection with transmission-based imaging, due to a reduced effect of the light 133 

scattering at pathogenic structures deeper within the leaf tissue. P. teres f. teres causes rapid 134 

cell death, which should result in similar results as the measurement of spontaneous necrosis in 135 

the study of Thomas et al. (2017) and should be comparable with the characteristic necrotic 136 

lesions in the centre of Cercospora beticola symptoms, which were investigated by Bergsträsser 137 

et al. (2015). 138 

 139 

Through this approach – while taking into account the results of previous articles in regards to 140 

performance of reflectance and transmittance datasets – it should be possible to shed light on 141 

the performance of transmission imaging based on the differing plant-pathogen interactions of 142 

biotroph and necrotrophy pathogens. Multiple data analysis methods (both supervised and 143 

unsupervised) have been applied to the respective datasets in order to minimize the potential 144 

impact on disease detection accuracy. Thereby, observed differences between the performance 145 

of reflection and transmission datasets can be attributed to the different host-pathogen 146 
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interactions of the investigated diseases. The use of an unsupervised data analysis method and 147 

its comparison with the presented supervised methods is especially promising, as it does not 148 

rely on training data and thereby can both reduce workload and the potential for human error 149 

during data labeling.   150 

 151 

Materials and Methods: 152 

Plant cultivation and pathogen material 153 

Hordeum vulgare L. cv. Ingrid wild type (Hinze et al. 1991) plants were grown in TEKU VQB 154 

7x7x8 cm pots (Pöppelmann, Lohne, Germany) and filled with commercial substrate 155 

(Klasmann-Deilmann GmbH, Geeste, Germany) inside a climate chamber at 20/20 °C 156 

(day/night) 60% relative humidity (RH) and day light period of 16 h. At growth stage 12 157 

according to BBCH scale (Hack et al. 1992) the plants were inoculated with the respective 158 

pathogens and placed in high humidity environment (>90%) and indirect lighting conditions 159 

for two days to maximize chance of infection before the second leaf of each plant was fixed 160 

within a custom plastic frame. 12 plants were used as healthy control, being inoculated with 161 

water, 12 plants were inoculated with a spore suspension (60000 spores/ml; spores were 162 

collected from infected wheat plants and stored at -80 °C to be used for inoculation directly 163 

after thawing) of P. hordei (stored field isolate from the area near Bonn) and 6 plants were 164 

inoculated through placement of cut leaves, showing heavy symptoms of P. teres f. teres 165 

infection, gathered around the area of Bonn. The inoculations were performed by spraying the 166 

spore suspensions and placing leaf pieces equally over the to be inoculated plant leaves for the 167 

two days the plants spend under high humidity conditions. 168 

 169 

Hyperspectral imaging measurement 170 
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The HyperArt system was used to measure reflection and transmission of the plants 171 

simultaneously during the experiment (Bergsträsser et al. 2015; Thomas et al. 2017; Patent nr: 172 

DE102012005477). The system was modified according to Thomas et al. (2017). All leaves 173 

were measured in the visible and near infrared areas of the electromagnetic spectrum (400 – 174 

1050 nm) in a daily time-series measurement from 3 days after inoculation (dai) to 9 dai. 175 

Measurements at earlier times were not possible, due to the requirement of the fungi to have 176 

high humility for infection of barley leaves. The leaves were kept fixated within the custom 177 

plastic frames over the entire measurement period to ease comparison of disease development 178 

at different images in the time series for data analysis. For each measurement a 99% reflectance 179 

white standard (Spectralon, Labsphere Inc., North Dutton, NH, USA) and a white diffuser 180 

lambertian transmission foil (Zenith Polymer® ≈ 50% transmission, SphereOptics GmbH, 181 

Uhldingen, Germany) was acquired, before measuring the leaf sample. These measurements 182 

served as white references for reflection and transmission images for the image normalization 183 

(Bergsträsser et al. 2015). Wavelength dependent differences in the percentage of the reflected 184 

and transmitted light of the two white references were taken into consideration during the 185 

normalization process. With each measurement a dark current image of the internal camera 186 

noise was measured by closing an internal camera shutter. 187 

 188 

Data analysis 189 

The reflectance and transmittance of the images was calculated by normalising the acquired 190 

images over the according white references, serving as standards with known 191 

reflection/transmission values, with ENVI 5.1 + IDL 8.3 (ITT Visual Information Solutions, 192 

Boulder, CO, USA). The normalized images were smoothened through the application of the 193 

Savitzky-Golay filter (Savitzky and Golay 1964) to eliminate noise within the hyperspectral 194 

datasets for further analysis. Background masking and separating the hyperspectral images to 195 
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single leaves was performed through an automated algorithm (thresholding based on global 196 

average). In contrast the transmission images required manual extraction due to their spectral 197 

properties being indistinguishable at places where parts of the frame were covering the plants 198 

in order to hold them in place. Due to significant noise within the data at the extremes of the 199 

sensor range the analyzed spectral range was reduced to 450 – 1000 nm.  200 

The collected datasets of reflection- and transmission-based leaf images with developing net 201 

blotch and brown rust symptoms respectively were analysed with three different data analysis 202 

algorithms – support vector machines (SVM, Cortes and Vapnik 1995), spectral decomposition 203 

(SD, Keshava and Mustard 2002) and a combination of principal component analysis (PCA) 204 

with following distance classifier (DC, Mahalanobis et al. 1996). The SVM represents a 205 

supervised approach of data analysis, in which a set of generated training data is used as basis 206 

for classification. The SD is an unsupervised method, which generates classes based on distinct 207 

datapoints within the analyzed dataset. The combination of PCA and DC finally represents a 208 

mixed approach of reducing data dimensionality with the unsupervised PCA and sorting the 209 

resulting correlation of pixels with the principal components into pre-generated classes with the 210 

supervised DC. Classification results of data analysis approaches are investigated in 211 

combination with manual rating (MR) to compare the potential of both the reflection and 212 

transmission datasets for the characterization and detection of differing plant-pathogen 213 

interactions. 214 

In order to prepare the dataset for analysis of its variance with principal component analysis all 215 

spectral signatures were normalized into the unit Euclidian norm to eliminate the influence of 216 

non-biologic variance to the measurement. Thereby the signatures/vectors are treated as points 217 

on a high dimensional unit sphere (Dhillon and Modha 2001; Leucker et al. 2016b), capturing 218 

the vectors direction while reducing the variance in the dataset. After these preparations the 219 

PCA was performed. PCA is a statistical method which introduced a new axis along the greatest 220 
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variance into the dataset, thereby transforming it based onto the variance and reducing the data 221 

complexity (Wold et al. 1987). The PCAs were performed over the healthy control leaves and 222 

the respective inoculated leaves within the dataset, including both reflection and transmission-223 

based images. A supervised classification to determine disease symptoms on the leaves was 224 

performed through the application of the DC algorithm (Minimum distance classifier with 225 

centroid match method and Euclidian distance) on the results of the PCA. The DC uses a set of 226 

training data in order to classify every pixel of the image based on its distance in the Euclidian 227 

space from known classes.  228 

An independent analysis of the data was performed by applying a non-linear support vector 229 

machines algorithm on the normalized dataset, which was used for the PCA with following DC. 230 

The applied SVM used radial basis function as kernel function to determine linear discriminant 231 

functions.  232 

The DC and SVM were both trained with a set of labelled training data, which was generated 233 

by an expert, using control- and inoculated leaf images of six healthy and six inoculated leaves 234 

respectively at 7 dai from rust and net blotch datasets in order to classify both early and late 235 

stages of disease symptoms. Each leaf within the dataset averaged between 9000 and 14000 236 

pixels, with the selected training data for each generated class averaging between 50 and 500 237 

pixels, based on class rarity within the images. The manually annotated data was ordered into 238 

14 classes (brown rust symptoms (early/late, reflection/transmission); net blotch symptoms 239 

(early/late, reflection/transmission); healthy tissue (leaf surface1/leaf surface2/leaf vein/leaf tip, 240 

reflection; leaf surface1/leaf vein, transmission)) and used as reference within the above 241 

classifications. Classes, which referred to healthy plant tissue of their respective datasets have 242 

been combined and are shown as one color in the result section, due to the focus on disease 243 

detection over slight differences in leaf reflection/transmission within different part of the leaf. 244 

For the comparison with manual rating and the manual rating itself the classes were simplified 245 
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to symptomatic and healthy tissue for their respective datasets, as a precise differentiation for 246 

each pixel into different disease stages or via the human eye and without the consultation of 247 

spectral signatures for the pixels was not feasible. 248 

Finally, unsupervised spectral decomposition – based on the mixed pixel approach – was used 249 

to analyze the datasets. Spectral decomposition factorizes the matrix, which is made up of the 250 

to be analyzed hyperspectral dataset, into a canonical form, representing it in terms of its 251 

eigenvalues and eigenvectors. This algorithm was applied unsupervised, with the program 252 

selecting mixed pixels of the image so as to determine the eigenvalues. The abundance of these 253 

eigenvalues within the dataset was then calculated to give out both an abundance map with 254 

abundance per pixel, as well as a classification of the image over the generated classes. 255 

The data analysis methods were performed with the FluxTrainer 2.9.0.1 Software (LuxFlux 256 

GmbH, Reutlingen, Germany). 257 

Leaves were manually rated by an expert at the end of the experiment 9 dai. The manual rating 258 

was performed with a Pseudo RGB image as basis with the goal to label healthy and infected 259 

leaf tissue. Unlike the generated training data, each pixel of the images was sorted into the 260 

classes healthy and symptom during this rating to compare disease severity visible by eye with 261 

the results of the different data analysis methods. Pixels that showed clearly identifiable disease 262 

Symptoms with the bare eye were labelled as Symptom, while other pixels were labelled as 263 

healthy.  264 

The results of the manual rating were used as comparison for post classification of the data. 265 

This was achieved via a two-ways approach. The leaf images of different dates were compared 266 

with each other in order to determine if the classification results which showed pixels as 267 

diseased without visible symptoms correlate with symptom development at later dates (Fig. 3 268 

and 4). Furthermore, the classifiers and MR were analyzed through confusion matrices of the 269 

classification results from the different data analysis methods on both reflection and 270 
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transmission datasets. Confusion matrices were computed via a C++ program. The results of 271 

the confusion matrices were visualized (see fig. 7 and 8) to determine if the grouping of pixels 272 

that were classified as symptomatic in the algorithms but not the MR correlate with the expected 273 

development of disease symptoms to further validate the data analysis. 274 

 275 

Results: 276 

Manual assessment of the gathered datasets 277 

The water-inoculated control plants did not show any development of disease symptoms of 278 

either net blotch or brown rust over the course of the experiment. 279 

The plants which were inoculated through direct contact to leaf pieces, infected with P. teres f. 280 

teres, developed net blotch symptoms. First symptoms of the net blotch disease became visible 281 

at 5 dai both in reflection- and transmission-based images and slowly progressed until the last 282 

measurements were taken at 9 dai (Fig. 3). During this time the symptoms developed from the 283 

initially infected areas of the host plants leaves, which had direct contact with infected leaf parts 284 

during inoculation. Throughout the symptom development the net blotch symptoms proved to 285 

be equally visible in reflection and transmission images, showing similar leaf discoloration and 286 

symptom area (Fig. 3). During manual rating of the disease severity at 9 dai the reflection and 287 

transmission data were rated with 0.72 and 0.69 percent of the leaf area showing symptomatic 288 

tissue respectively (Table 1). 289 

The plants which were inoculated with P. hordei (Ph) spore suspension developed without 290 

exception brown rust symptoms over the course of the experiment. First disease symptoms 291 

became visible at 5 dai in the reflection-based images and 6 dai in the transmission-based 292 

images – with the symptoms being easier to distinguish in the reflection-based data (Fig. 4). 293 

Symptoms developed over the entire leaf area, starting with discrete, small chlorotic spots at 294 
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the initial infection sites. Typical yellow, chlorotic areas were forming on the leaves at 5 dai 295 

and growing, with brown spore colonies breaking through the epidermis and becoming visible 296 

from 7 dai until the end of the experiment – this process could be clearly observed in the 297 

reflection-based images (Fig. 4). Meanwhile, in the transmission-based images this process 298 

could only be observed as a slight darkening of the symptomatic leaf areas, which became 299 

visible at 6 dai, and the development of brown spots in the middle of the described darkened 300 

areas, starting at 7 dai (Fig. 4). During manual rating of disease severity – based on reflection 301 

and transmission datasets – 15.25 and 5.04 percent of the leaf tissue was rated as symptomatic 302 

tissue respectively (Table 1). 303 

 304 

Analysis of the respective reflection- and transmission-based data through three distinctive 305 

data analysis methods 306 

The datasets for the investigated pathogens – for both reflectance and transmittance data – were 307 

analysed with the three distinct data analysis methods (SVM, DC, SD), as described above.  308 

The leaf images of the control plants were classified as healthy tissue for both reflectance and 309 

transmittance with the exception of <0.1% of the pixels, which were classified as disease 310 

symptoms for SVM and SD classification. The falsely classified pixels were located either at 311 

the edge of the leaves or in the areas where the frame was covering parts of the leaves during 312 

measurement (Fig. 5). Thereby, containing mixed information of the respective 313 

reflected/transmitted light of both the measured leaf and the black background/frame. The DC 314 

algorithm – based on the results of the previously performed PCA – performed noticeably 315 

worse, having overall the highest tendency to falsely classify pixels in the above-mentioned 316 

areas with up to 0.3% of pixels being falsely classified as symptoms. The DC classification also 317 

was unable to differentiate between symptoms and the leaf vein in the transmission-based 318 
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images of the net blotch dataset, causing pixels of the leaf veins to be classified as disease 319 

symptom, increasing the falsely classified pixels up to 10% in this specific case (Fig. 5). 320 

Both DC and SD algorithms were able to detect net blotch symptoms within the reflectance 321 

images of the inoculated leaves at 4 dai – one day before the symptoms were visible with the 322 

human eye – and able to track the development of the symptoms during the following 323 

measurement days, whereby the DC did show a clearer detection of early symptoms but was 324 

also more prone to misclassify pixels containing healthy tissue as symptoms (Fig. 3). For 325 

transmission-based images the algorithms were able to detect first net blotch symptoms at 5 326 

dai, showing a slightly reduced performance in early disease detection compared to reflectance-327 

based data (Fig. 3). The SVM based classification performed notably worse for early detection 328 

in reflection-based images. Despite using the same training data set as the DC first symptoms 329 

were only detected at 7 dai. Meanwhile, the transmittance images allowed a detection of the 330 

symptoms at 5 dai, performing similar to the other two algorithms (Fig. 3).  331 

At 9 dai, the final measurement day for the experiment, net blotch symptoms could be classified 332 

by all three data analysis methods in both reflectance and transmittance images, correlating with 333 

the results of manual labelling of disease symptoms – both in disease severity (Table 1) and 334 

location of disease symptoms on the leaf (Fig. 5). A notable exception being the DC algorithm 335 

for the transmission-based image, as the above-mentioned classification error of the leaf vein 336 

persists, causing a disparity of about 10% in disease severity compared to manual rating results 337 

and other methods.  338 

When looking in more detail at the classification of the specific pixels within the images 339 

through the application of confusion matrices with the manual rating serving as the standard 340 

method for comparison of the different classification results with classic disease detection 341 

approaches. In order to achieve this one leaf for ach pathogens was manually rated, with the 342 

leaf for brown rust consisting of 13048 and the one for net blotch of 13418 manually annotated 343 
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pixels. The results show, that all three algorithms have a high accuracy for the correct 344 

classification of healthy tissue and symptoms within the reflection data (89.6% for SVM and 345 

84.5% for SD), with the DC algorithm outperforming the other two for disease detection (100%; 346 

Table 2). Within the transmission dataset the accuracy of all three algorithms is reduced (78.4% 347 

for SVM, 70.1% for SD and 97.9% for DC), with DC showing an uncharacteristically high 348 

error margin for misclassification of healthy tissue (10.6%) due to the misclassification of pixels 349 

showing the leaf vein as symptoms (Table 2). 350 

Within the brown rust dataset, the SVM classified first pixels in reflectance images as disease 351 

symptoms at 4 dai, one day before the disease became visible with the human eye, and classifies 352 

symptomatic leaf areas correctly over the course of the experiment (Fig. 4). In the transmission-353 

based images the SVM only detects disease symptoms at 6 dai. Due to high difficulties in 354 

differentiating early disease symptoms and healthy tissue it was however necessary to create 355 

multiple classes of healthy leaf tissue within the training data for both SVM and DC. As wheat 356 

leaves are not entirely homologous in their reflection and transmission properties – based on 357 

leaf age, leaf structures, leaf angle, etc. – and the early pathogen signatures being similar to 358 

those of the control leaves multiple distinct classes at different pathogen stages and at healthy 359 

leaf areas with specific features have been created. This explains the early misclassification of 360 

pixels showing healthy leaf tissue as disease symptoms at 4 dai for the DC (Fig. 4). As shown 361 

in figure 4 the DC classification increases in accuracy over the course of the experiment, 362 

correlating significantly better with the results of the other data analysis methods at 8 and 9 dai 363 

(36% / 12% for SVM reflectance / transmittance, 38% / 21% for DC reflectance /transmittance). 364 

When applied to the transmittance images the DC does not have these issues, accurately 365 

detecting disease symptoms from 6 dai onwards like the SVM. The transmission-based dataset 366 

could be classified with only a single class for healthy tissue, showing a more uniform spectral 367 

signature over the leaf area when compared with the reflectance dataset. Disease symptom 368 
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detection with the SD classified first disease symptoms at 5 dai and 6 dai for reflectance and 369 

transmittance images respectively and shows accurate detection over the course of the 370 

experiment (Fig. 4), with a slightly reduced disease severity assessment compared to SVM and 371 

DC (27% /14% for reflectance / transmittance).  372 

Comparison of the classification results at 9 dai shows that all data analysis algorithms achieve 373 

significantly higher disease severity ratings then manual rating for both reflectance (e. g. 36% 374 

for SVM compared to 15% for manual rating (brown rust)) and transmittance (e. g. 12% for 375 

SVM compared to 5% for manual rating (brown rust)) datasets (Table 1), while the spatial 376 

distribution of symptomatic pixels within the images matches for data analysis methods and 377 

manual rating (Fig. 6).  378 

The post classification results of the respective confusion matrices show that the selected 379 

algorithms are able to accurately detect disease symptoms, which were labelled in the manual 380 

rating, in both reflection (97% for SVM, 86.3% for DC, 88.3% for SD) and transmission (86% 381 

for SVM, 95.5% for DC, 92.3% for SD) data (Table 2). The detection accuracy of the SVM for 382 

reflectance images being notably higher than other algorithms. Both DC and SD have a higher 383 

accuracy for transmittance image symptom detection, while the accuracy of the SVM decreases 384 

when compared with the results of reflection data. All algorithms classified a high percentage 385 

of pixels which did not show clearly visible disease symptoms – and where thereby marked as 386 

healthy tissue in the manual rating – as symptoms (25.8% for SVM, 30.4% for DC, 16.5% for 387 

SD) for the reflectance images, while the results of the transmittance images show a lower error 388 

margin (Table 2). 389 

 390 

Discussion: 391 
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The results of this study show differences within the performance of transmission-based 392 

measurement approaches, depending on the way pathogens interact with the host plant. Within 393 

this study the biotroph pathogen Puccinia hordei and the necrotroph pathogen Pyrenophora 394 

teres f. teres have been investigated with both reflection and transmission measurement 395 

approaches. Combined with the results of Thomas et al. (2017), which investigated the 396 

reflection and transmission-based detection of the biotroph pathogen Blumeria graminis f. sp. 397 

hordei and theorized the low performance of transmission data was related to the interactions 398 

of light with the tissue while passing the leaf, this allows the estimation of cases in which the 399 

addition of transmission-based approaches would be beneficial for increased accuracy in 400 

disease detection. B. graminis f. sp. hordei mainly interacts with the epidermis layer of the plant, 401 

while P. hordei – albeit also a biotroph pathogen – grows into the intercellular space and 402 

interacts with cells within the mesophyll layer (Fig. 2). The necrotoph pathogen P. teres f. teres 403 

secretes mycotoxins, which cause necrosis over all layers of the leaf tissue in areas where the 404 

mycelium of the pathogen is present (Fig.2). This study provides insights about the interaction 405 

of transmitted light with the different pathogens and thereby its potential for disease detection, 406 

based on the performance of transmission measurement for the detection and quantification of 407 

the pathogens with their differing host-pathogen interactions and the comparison to reflection-408 

based measurement. 409 

 410 

Evaluation of transmission-based imaging data for disease detection 411 

The theory postulated by Thomas et al. (2017) that light scattering within the leaf influences 412 

the disease detection through transmittance images and thereby the interactions of pathogens 413 

with the host plant play an important role in detection speed and accuracy is supported by the 414 

results of the current study.  415 
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It could be shown that net blotch symptoms are detected with no substantial differences in 416 

disease severity at later stages. This was true for both manual rating of reflectance and 417 

transmittance images, as well as classification results with SVM and SD (Table 1). The 418 

combination of PCA and DC did classify a notably higher number of pixels in the transmittance 419 

data as diseased, this can be explained due to the inability of the algorithm to discern pixels 420 

showing the leaf veins from pixels with disease symptoms (Table 2). Figure 7 shows, that the 421 

majority of pixels which were classified as showing symptoms in the transmission images of 422 

the DC results while being labelled as healthy in the MR align with the leaf vein placement on 423 

barley leaves. These results coincide with the findings of Bergsträsser et al. (2015), which 424 

investigated the advantages of combined reflectance and transmittance measurements for 425 

disease severity estimation on developed Cercospora leaf spot symptoms via a comparison of 426 

Cercospora leaf spot index results derived from reflectance and transmittance images. Like the 427 

net blotch disease, which was investigated in this study, Cercospora leaf spot disease also 428 

causes necrotic lesions on infected sugar beet leaves (Mahlein et al. 2012, Leuker et al. 2016). 429 

The results of both studies also correlate with findings of Thomas et al. (2017) that 430 

transmission-based images allowed for precise detection of spontaneous necrosis on leaves and 431 

their differentiation from late stage powdery mildew symptoms, which required more complex 432 

methodology when differentiated through reflection-based data.  433 

In contrast the estimation of disease severity of brown rust on barley leaves within this study 434 

showed, that the estimates based on transmittance images were lower compared to reflectance 435 

image-based estimates (Table 1). The algorithms did each classify a significant number of 436 

pixels, which could not be labelled as symptomatic during the MR, into the symptoms group 437 

for both reflectance and transmittance images (Table 2). The location of these pixels shows, 438 

that they are mostly located at the outer edges of areas which were labelled as symptoms 439 

through MR, hinting at the possibility to detect brown rust infection before visible symptoms 440 
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appear at a given location (Fig. 8). Despite the success of the algorithms for disease detection 441 

it showed that the estimated disease severity in transmission-based images was significantly 442 

lower than reflection-based images, with MR and SVM showing the highest discrepancy of 443 

about 66% between the results – ~15% and ~35% disease severity for reflectance and ~5% and 444 

~11% for transmittance respectively (Table 1). Visibility of brown rust symptoms with the 445 

human eye within the transmittance images was mostly limited to areas where spore colonies 446 

had formed and broken through the leaf epidermis, with chlorotic lesions from prior rust 447 

development being barely visible once larger areas were infected. Nevertheless, the detection 448 

of brown rust symptoms was more accurate and could be earlier detected within transmission-449 

based data then the powdery mildew symptoms in the study of Thomas et al. (2017), in which 450 

powdery mildew symptoms were detected through principal component analysis. All used 451 

algorithms in the current study have shown to be able to detect disease symptoms one day after 452 

they became visible within the reflectance images (Fig. 4) compared to two days for powdery 453 

mildew in the previous study (see Thomas et al 2017, figure 6). 454 

These findings show, that while pathogen detection through reflectance is similar for biotroph 455 

(B. graminis) and necrotroph (C. beticola) pathogens shown in earlier studies (Bergsträsser et 456 

al. 2015; Thomas et al. 2017), the detection efficiency through transmittance varies 457 

considerably for pathogens investigated in the current study. Necrotroph pathogens like net 458 

blotch (current study) and Cercospora leaf spot disease (Bergsträsser et al. 2015) can be 459 

detected equally well through reflection and transmission at late disease development stages. 460 

Meanwhile, for biotroph pathogens, such as brown rust (current study) and powdery mildew 461 

(Thomas et al. 2017), reflection-based pathogen detection outperforms transmission-based 462 

detection. Nevertheless, it could be shown that, when comparing the results of brown rust 463 

detection through transmittance data with the detection of powdery mildew symptoms in 464 

Thomas et al. (2017), the classification of brown rust symptoms through transmission-based 465 
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data analysis is more accurate and allows for earlier detection of the pathogen then those for 466 

powdery mildew – with transmission imaging being able to detect powdery mildew two days 467 

after symptoms could be detected through reflection imaging, while brown rust could be 468 

detected with a delay of one day only. These trends can be explained by the interaction of 469 

transmitted light with the plant tissue (Fig. 1). As the light becomes diffusely scattered while 470 

traversing the leaf tissue it stands to reason that more intrusive pathogens, which interact with 471 

deeper cell layers inside the leaf, would be less affected by these effects then pathogens which 472 

interact with the plant surface and epidermis layers, such as powdery mildew (Fig. 9). As 473 

necrotroph pathogens cause significantly more cellular damage then biotroph pathogens and, 474 

like the example of net blotch shows (Fig. 2), interact with all layers of the leaf, it is reasonable 475 

that they would be best suited for transmission-based detection. These findings support the 476 

hypothesis of Thomas et al. (2017) that the differences in transmission-based disease detection 477 

for selected pathogens is rooted in the nature of their interaction with the host plant and suggest 478 

that transmission-based pathogen detection is correlated significantly with the intrusiveness of 479 

a given pathogen during its development inside the host tissue. 480 

 481 

Early disease detection through transmission 482 

It has been shown by multiple studies that hyperspectral reflectance imaging sensors are able 483 

to detect disease symptoms before symptoms are visible with the human eye (Kuska et al. 2015, 484 

Thomas et al. 2017, Behman et al. 2018). So far this could not be shown for images based on 485 

transmission, as studies with time-series measurements that compare the performance of 486 

reflectance and transmittance hyperspectral images for early plant disease detection are, to the 487 

knowledge of the authors, not available – besides Thomas et al. (2017). Within the study of 488 

Thomas et al. (2017) powdery mildew infection could be detected based on transmittance 489 
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images at 6 dai, two days after detection was possible through the reflectance images and at a 490 

point when the disease symptoms were already visible by eye in reflection-based RGB images.  491 

In the current study both net blotch and brown rust symptoms in transmittance images could be 492 

detected one to two days after detection was possible in reflectance images for all applied data 493 

analysis methods – with the notable exception of net blotch symptom detection through SVM, 494 

which can be explained as the SVM failed to detect symptoms in the reflection-based dataset 495 

before 7 dai while the two other algorithms managed to detect at 4 dai. While this exception 496 

shows that under certain circumstances it is possible to achieve earlier disease symptom 497 

detection through transmission-based images it would be more suited to use an algorithm that 498 

performs better for the detection of net blotch symptoms as the symptoms were visible by eye 499 

at 5 dai.  500 

From the results of these studies, it can be concluded that transmission-based measurements are 501 

not well suited for early disease detection, even from highly invasive pathogens. A possible 502 

explanation would be that pathogens like net blotch spread from their entry point at the leaf 503 

surface (Fig. 2), which might cause changes within the plants spectral signature to be detected 504 

in reflectance images while the internal light scattering inside the leaves prevents detection of 505 

these early plant/pathogen interactions through transmission-based imaging (Fig. 9). While this 506 

effect would be reduced for more intrusive pathogens like brown rust and net blotch, it could 507 

cause an increase of mixed spectra – containing partial information of symptomatic and healthy 508 

leaf areas within a pixel due to internal light scattering – in the transmission data during early 509 

pathogen development in transmission measurement compared to reflection measurement. 510 

 511 

Comparison of data analysis methods for disease detection and disease severity estimation 512 

within this study 513 
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Due to the relatively small size of the datasets, which were collected in the experiments it was 514 

decided that – while deep learning approaches have recently shown to be promising in plant 515 

stress detection (Golhani et al. 2018; Singh et al. 2018; Feng et al. 2020) – classical machine 516 

learning methods would be applied within the current study. While the datasets consist of two 517 

independent time series measurements per pathogen, containing 12 and 6 plants respectively 518 

with thousands of pixels per leaf, it was deemed unlikely that the amount of data would be 519 

sufficient for the requirements of deep learning approaches (Singh et al. 2018). Meanwhile 520 

machine learning methods have shown excellent results for the analysis of optical data for the 521 

estimation of plant parameters in the past, as well as recent studies (Wahabzada et al. 2015; 522 

Heckmann et al. 2017; Ugarte Fajardo et al. 2020). 523 

Three different data analysis methods have been used in this study and were compared to MR 524 

of the RGB images in order to verify the results of the experiments and minimize the risk, that 525 

the conclusions are adequate to investigate the characteristics of transmitted light for the 526 

investigation of plant-pathogen interactions. In comparison with the MR every algorithm 527 

achieved a higher disease severity estimation for both net blotch (Fig. 5) and brown rust (Fig. 528 

6) symptoms both for reflectance and transmittance images (Table 1). These results, while 529 

promising, are posing the question if the classifications of the different algorithms are correct, 530 

or misclassifying pixels showing healthy tissue as symptomatic. To clarify this issue, the results 531 

of each algorithm were investigated twofold. First the classification results of images early in 532 

the time-series were compared with pseudo RGB images from later stages for both net blotch 533 

(Fig. 3) and brown rust (Fig. 4) datasets. As the leaves were fixed during the entire timeframe 534 

of the measurements it was possible to compare the placement of pixels within different 535 

visibility stages. Furthermore, the results of the post classification through confusion matrices 536 

compared to the MR were visualized for both net blotch (Fig. 7) and brown rust (Fig. 8) images 537 

at 9 dai. These visualizations show, that the vast majority of the pixels which were classified as 538 
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showing symptoms through the data analysis are grouped around clusters of pixels that were 539 

labelled as symptomatic in the MR. It was expected that the different data analysis methods are 540 

able to classify pixels without symptoms being visible to the human eye, as it is one of the main 541 

interests in analysing hyperspectral imaging data to detect disease symptoms before they are 542 

visible by the human eye in RGB images (Behman et al. 2018).  543 

Among the data analysis methods, the combination of PCA and DC showed the highest 544 

estimations of disease severity, but is also the method that has been shown to be most prone to 545 

mistakenly classify healthy tissue as symptoms for net blotch (transmission, Fig. 7) and brown 546 

rust (reflection, Fig. 8). In these cases, the SVM was able to clearly differentiate between 547 

disease symptoms and healthy tissue, while being trained on the same set of training data. The 548 

SVM as a supervised method performed well for both early detection and disease severity 549 

estimation, with the notable exception of net blotch reflectance images (Fig. 3). The 550 

unsupervised SD performed well in all cases, being able to detect symptoms as early as the 551 

supervised methods – with the exception of brown rust reflectance, where the SVM was able to 552 

detect symptoms one day prior to other methods (Fig. 4) – and was overall the least prone to 553 

misclassification. SD has the added advantage, that the unsupervised algorithm does not require 554 

training data in order to function and did classify disease symptoms and healthy tissue while 555 

generating fewer classes then the supervised methods required. However, the SD had in all 556 

cases the lowest disease severity estimates when compared with other algorithms, but still 557 

outperformed MR (Table 1). 558 

The combination and comparison of the results of different data analysis algorithms ensured 559 

that no false conclusions through performance abnormalities of a single algorithm while 560 

investigating the properties of reflectance and transmittance datasets could occur. This was 561 

necessary, as it has been shown in earlier studies, that the accuracy of different machine learning 562 

methods can vary depending on the investigated dataset (AlSuwaidi et al. 2018; Barreto et al. 563 
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2020).While outliers in algorithm performance, such as the late detection of brown rust 564 

symptoms in reflectance images of SVM and the misclassification of leaf vein pixels as net 565 

blotch symptoms through DC, occurred it was possible to identify them through comparison 566 

with the alternative data analysis algorithms employed within the study. 567 

 568 

Conclusion: 569 

The postulated theory that the nature of the plant-pathogen interaction during pathogen 570 

infection is related to the possibility to detect disease symptoms through transmission-based 571 

imaging is being supported by the results of this study. Thereby, the use of transmission 572 

measurement is most suited for invasive pathogens, which cause tissue damage in deeper layers 573 

of the leaf, or in order to separate stress factors which show a high similarity within the changes 574 

to the spectral signature of reflectance data. Transmission-based measurements seem to be 575 

outperformed by reflection-based measurements in general when it comes to early disease 576 

detection.  577 
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Figures: 710 

 711 

Fig. 1 Pathway of light when interacting with a plant leaf. Upon reaching the plant's surface a 712 

portion of the light is reflected back from the cuticle (C) and epidermis (Ep), while the rest of 713 

the light enters the plant tissue in a diffusely scattered manner (L1, blue cone). The light 714 

crosses both palisade- (Pm) and spongy mesophyll (Sm) - being partially absorbed and 715 

scattered back to the leaf surface as indirect reflection - before reaching the epidermis and 716 
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cuticle un the bottom of the leaf. Here a portion of the light is transmitted, thereby exiting the 717 

leaf as transmitted light (L1, blue arrows), while the rest is being reflected at the leaf surface-718 

air border and traverses the mesophyll tissue again while being diffusely scattered (L2, orange 719 

cones). Upon reaching the epidermis and cuticle of the top of the leaf a portion of L2 is 720 

transmitted as indirect reflection and would be measured with the light coming from the 721 

surface reflection, while the rest is reflected from the leaf surface-air border to continue its 722 

path through the leaf (L3, yellow cones). St = stomata, Vb = vascular bundle 723 

  724 
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 725 

Fig. 2 Interactions of the pathogens Blumeria graminis f. sp. hordei (a), Puccinia hordei (b) 726 

and Pyrenophora teres f. teres (c) with barley leaves. C = cuticle, Ep = epidermis, Pm = 727 

palisade mesophyll, Sm = spongy mesophyll, St = stomata, Vb = vascular bundle, Co = 728 

conidia, Gt = germination tube, Ap = appressorium, Pp = penetration peg, Hs = haustorium, 729 

Em = epiphytic mycelia, Cp = conidiophores, Sp = Spore, Vs = vesicle, Ih = infection hypha, 730 

Hm = haustorial mother cell, C = colony, H = hyphae  731 
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 732 

Fig. 3 Reflection and transmission images of an Ingrid wild type leaf, inoculated with 733 

Pyrenophora teres f. teres over the course of the experiment. The Pseudo RGB images are 734 

compared with false colour images, representing the classes healthy (green colours) symptom 735 

(red) and artefact (black) of the respective data analysis methods. RGB = Pseudo RGB, SVM 736 

= Support Vector Machines, DC = Distance Classifier, SD = Spectral Decomposition 737 

  738 
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 739 

Fig. 4 Reflection and transmission images of an Ingrid wild type leaf, inoculated with 740 

Puccinia hordei over the course of the experiment. The Pseudo RGB images are compared 741 

with false colour images, representing the classes healthy (green colours) and symptom 742 

(yellow and red colours) of the respective data analysis methods. RGB = Pseudo RGB, SVM 743 

= Support Vector Machines, DC = Distance Classifier, SD = Spectral Decomposition 744 

  745 
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  746 

Fig. 5 Reflection and transmission image of an Ingrid wild type leaf, inoculated with 747 

Pyrenophora teres f. teres at 9 days after inoculation. The Pseudo RGB images are compared 748 

with false colour images, representing the classes healthy (green colours), symptom (red) and 749 

artefact (black) of the respective data analysis methods, as well as with the results of manual 750 

rating of the image by an expert. RGB = Pseudo RGB, SVM = Support Vector Machines, DC 751 

= Distance Classifier, SD = Spectral Decomposition, MR = Manual Rating 752 

  753 
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  754 

Fig. 6 Reflection and transmission image of an Ingrid wild type leaf, inoculated with Puccinia 755 

hordei at 9 days after inoculation. The Pseudo RGB images are compared with false colour 756 

images, representing the classes healthy (green colours) and symptom (yellow and red 757 

colours) of the respective data analysis methods, as well as with the results of manual rating 758 

of the image by an expert. RGB = Pseudo RGB, SVM = Support Vector Machines, DC = 759 

Distance Classifier, SD = Spectral Decomposition, MR = Manual Rating  760 
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 761 

Fig. 7 False colour visual representation of confusion matrix results on net blotch infected 762 

leaves at 9 dai for reflection and transmission images. The images show the comparison of the 763 

respective data analysis method classification outcome compared to manual rating. Green and 764 

red pixels representing healthy and symptom classification which showed no difference for 765 

manual rating and classification. Light blue coloured pixels represent pixels which were 766 

classified as symptoms in the data analysis and healthy in the manual rating. Dark blue 767 

coloured pixels respectively represent pixels that were labelled as symptoms in the manual 768 
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rating and classified as healthy through the data analysis. SVM = Support Vector Machines, 769 

DC = Distance Classifier, SD = Spectral Decomposition 770 

  771 
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 772 

Fig. 8 False colour visual representation of confusion matrix results on brown rust infected 773 

leaves at 9 dai for reflection and transmission images. The images show the comparison of the 774 

respective data analysis method classification outcome compared to manual rating. Green and 775 

red pixels representing healthy and symptom classification which showed no difference for 776 

manual rating and classification. Light blue coloured pixels represent pixels which were 777 

classified as symptoms in the data analysis and healthy in the manual rating. Dark blue 778 

coloured pixels respectively represent pixels that were labelled as symptoms in the manual 779 
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rating and classified as healthy through the data analysis. SVM = Support Vector Machines, 780 

DC = Distance Classifier, SD = Spectral Decomposition  781 
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 782 

Fig. 9 Influence of diffuse light scattering inside plant leaf tissue for transmission-based 783 
measurement of pathogens which interact with the leaf surface and epidermis (Ep). Incoming 784 
light is colliding with the cuticle (C) and epidermis of the leaf, where a portion of the light is 785 
being directly reflected (R). This leads to a direct interaction of the reflected light with 786 
pathogens that grow on the leaf surface, resulting in a significant influence on the reflected 787 
lights wavelength. However, the portion of the light which is being transmitted through the 788 
leaf is being diffusely scattered (L1, L2, L3). For non-intrusive pathogens like powdery 789 
mildew (a) this leads to a significant overlap of light, which did not come in contact with the 790 
pathogen, when exciting the leaf tissue as transmitted light (L1+L2+L3). For more intrusive 791 
pathogens like brown rust (b) this effect is significantly reduced, as the light interacts with the 792 
pathogen in deeper plant tissue layers, thereby reducing the effect of the scattering on 793 
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detection accuracy for transmitted light. Pm = palisade mesophyll, Sm = spongy mesophyll, 794 
St = stomata, Vb = vascular bundle 795 

  796 
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Tables:  797 

Table 1: Disease severity calculation of net blotch and brown rust inoculated leaves at 9 days 798 

after inoculation with different data analysis algorithms and comparison to manual rating. DC 799 

= Distance Classifier, SVM = Support Vector Machines, SD = Spectral Decomposition, r = 800 

reflectance, t = transmittance.  801 

 Net blotch r. Net blotch t. Brown rust r. Brown rust t. 

Manual rating 0.72% 0.69% 15.25% 5.04% 

SVM  1.04% 1.05% 35.92% 11.72% 

DC 2.4% 11.18% 37.9% 20.75% 

SD 1.12% 0.98% 27.35% 13.98% 

 802 

  803 
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Table 2: Results of confusion matrix on images classified with manual rating compared to the 804 

applied data analysis methods for net blotch and brown rust infected leaves at 9 days after 805 

inoculation. Values in percent represent the percentage of the total amount of pixels within the 806 

respective classes, which were classified correctly based on the results of the manual rating. 807 

DC = Distance Classifier, SVM = Support Vector Machines, SD = Spectral Decomposition. 808 

  Manual Rating 
  Net blotch Brown rust 

 Healthy Symptom Healthy Symptom 

R
ef

le
ct

io
n SVM Healthy 99.6% 0.4% 74.2% 25.8% 

Symptom 10.4% 89.6% 3% 97% 

DC Healthy 98.3% 1.7% 69.6% 30.4% 
Symptom 0% 100% 13.7% 86.3% 

SD Healthy 99.4% 0.6% 83.5% 16.5% 
Symptom 15.5% 84.5% 11.7% 88.3% 

Tr
an

sm
is

si
on

 

SVM Healthy 99.5% 0.5% 92.2% 7.8% 
Symptom 21.6% 78.4% 14% 86% 

DC Healthy 89.4% 10.6% 84.1% 15.9% 
Symptom 2.1% 97.9% 4.5% 95.5% 

SD Healthy 99.5% 0.5% 90.2% 9.8% 
Symptom 29.9% 70.1% 7.7% 92.3% 

 809 


